
The Cognitive Foundry:
A Flexible Platform for Intelligent Agent Modeling

Justin Basilico, Zachary Benz, Kevin R. Dixon

Sandia National Laboratories

P.O. Box 5800 MS 1188

Albuquerque, NM 87185-1188

{jdbasil, zobenz, krdixon}@sandia.gov

Keywords: cognitive model, machine learning, agent simulation

ABSTRACT: The Cognitive Foundry is a unified collection of tools for Cognitive Science and Technology

applications, supporting the development of intelligent agent models. The Foundry has two primary components

designed to facilitate agent construction: the Cognitive Framework and Machine Learning packages. The Cognitive

Framework provides design patterns and default implementations of an architecture for evaluating theories of

cognition, as well as a suite of tools to assist in the building and analysis of theories of cognition. The Machine

Learning package provides tools for populating components of the Cognitive Framework from domain-relevant data

using automated knowledge-capture techniques. This paper describes the Cognitive Foundry with a focus on its

application within the context of agent behavior modeling.

1 Introduction

The Cognitive Foundry is a unified collection of software

tools for Cognitive Science and Technology (CS&T)

applications. CS&T is a developing field at the

intersection of cognitive science, computer science, and

engineering that takes fundamental concepts from

cognitive science and neuroscience and deploys systems

implementing these ideas. To further the goals of this

multidisciplinary field, we have designed the Foundry to

be a robust, extensible platform to support research, rapid

prototyping, and system deployment, while adhering to

rigorous software-engineering principles. Instead of

pushing a single theory of cognition, the Foundry contains

reusable software components and algorithms designed to

support a wide variety of development needs. The

software architecture of the Foundry promotes reusability,

maintainability, and cross-platform compatibility, without

sacrificing computational resources by leveraging best-in-

class numerical packages.

2 Why the Cognitive Foundry

As the Sandia National Laboratories CS&T program grew

from its infancy, the use cases for our cognitive-modeling

software evolved as well, driven by both researcher- and

customer-centric needs. For basic-research

experimentation, researchers wanted a reusable toolkit

that allowed the rapid prototyping and visualization of

new ideas and hypotheses in modeling cognition, as well

as statistical-validation techniques to compare

performance against a standard battery of existing results

from the literature. Our customers have expressed an

increasing interest in automatically populating cognitive

models through automated knowledge-capture algorithms,

processing large amounts of data efficiently, parallel and

distributed computation, and verifiable software-

development processes. We meet these seemingly

divergent requirements by creating a graduated set of

programmer interfaces that enable both research

experimentation and system deployment, and the Foundry

assists users by providing a set of tools that accompany

those interfaces. For example, if a particular project

would benefit from parallel computation, then the user

can implement the rather simple methods associated with

the Concurrent Cognitive Module interface. The Foundry

then automatically provides the mechanisms to execute

the code in a parallel fashion, with no additional burden

placed on the user. We chose this graduated-interface

strategy to support both the general case by providing a

robust set of core functionality while also providing the

infrastructure for rapidly constructing special-purpose

applications that may require more intricate or onerous

functionality. The manifestation of the Cognitive

Foundry philosophy is that we provide a number of

interfaces, some of which are easy to implement, while

others may be more time consuming. The more

interfaces, or functionality, that a Foundry developer can

implement, the more Foundry tools can be brought to bear

on the problem. Thus, users can select the parts that

provide the best benefit to a specific project. The

Foundry’s Cognitive Framework provides a reusable

framework for building agents and experimenting with

cognitive simulation. The Machine Learning package

provides a large library of powerful learning algorithm

implementations that can be used on their own or to create

components of the Cognitive Framework. Each

component in the Cognitive Foundry is a tool that we

have found useful for building cognitive models and

cognitive systems.

2.1 Benefits of the Cognitive Foundry

One of the primary lessons learned from the maturation of

Sandia’s CS&T program is that the Cognitive Foundry

must provide coverage and support of a cognitive system

from idea to deployment, not just a cognitive simulation.

The Cognitive Foundry’s modularity allows users to

determine which components are necessary, or provide

value, to a particular project by selecting the tools used to

solve common cognitive-systems tasks, while being

assured that rigorous software-engineering quality

processes have been employed. The Foundry also

provides a well-defined path for components to

incorporate the latest research ideas and transition them

into a deployed system. Applications built on the

Cognitive Foundry’s Framework and Machine Learning

packages can immediately make use of new modules for

cognitive simulation and new algorithms that conform to

the common set of interfaces.

2.2 Communicating with the Cognitive Foundry

The Cognitive Foundry is written in the Sun Java 1.5

programming language. We have also developed several

other ways to interoperate with the Cognitive Foundry

from non-Java applications, as shown in Figure 1. For

example, we have created a native-machine interface that

allows applications written in other programming

languages, such as ANSI C/C++ or Microsoft .NET (C#,

Visual Basic) to call directly into the Foundry API. The

Cognitive Foundry also has a Network Interface library to

facilitate connecting to, viewing, controlling, and

launching models over a network. Finally, The Cognitive

Foundry has a graphical user interface to support the

inspection or manipulation of cognitive models during

creation and execution.

2.3 Design Methodology

On a philosophical level, the design of the Cognitive

Foundry has followed a graduated interface approach.

That is, the Cognitive Foundry is built on top of a set of

well defined, hierarchical interfaces. For example, the

Cognitive Foundry defines the functionality that a

Cognitive Model (a memory space, collection of modules,

etc.) and Multivariate Minimization Algorithm (an

objective function, an iteration loop, etc.) must possess.

The Cognitive Foundry then provides one or more default

implementations of these interfaces. However,

developers can always create their own tailor-made

implementations if existing ones do not meet their needs,

allowing researchers to test new ideas and hypotheses

quickly. Since other tools in the Cognitive Foundry

provide functionality at the interface level, new

implementations can automatically exploit existing

functionality provided by other components in the

Foundry by conforming to a defined interface. There are

several benefits to this interface-centric component-based

approach. It provides an easy mechanism for customizing

existing object implementations in the Foundry. It also

gives the ability to pick the specific objects from the

Foundry that are useful for a certain application. Finally,

it creates an integration point for many applications,

which defines an easy transition path from research to

deployment.

3 Cognitive Framework

The Foundry’s Cognitive Framework is a modular

software architecture for cognitive simulation designed

for use in CS&T applications. The Cognitive Framework

itself is a collection of interfaces, which allows

Framework users to either leverage the existing tools in

the Framework or specify different implementations to fit

their specific needs in order to test new ideas and

hypotheses.

3.1 Cognitive Model

The Cognitive Framework is designed so that different,

and possibly competing, elements of a “theory of

cognition” can be instantiated as desired, as shown in

Figure 2. This is accomplished by having a Cognitive

Module perform some aspect of a psychologically

plausible cognitive process. A Cognitive Model, then,

contains a collection of Cognitive Modules whose

purpose is to instantiate some aspect of cognition. The

main components of a Cognitive Model are shown in

Figure 3. Conceptually, Cognitive Modules are the

workhorse classes inside a Cognitive Model. A Cognitive

Model and its corresponding Cognitive Modules use a

single central container to store all state information,

called a Cognitive Model State. The state contains the

sufficient information needed to allow a Cognitive Model

Cognitive
Framework

C / C++ / .NET
Application

Common
Package

Native Interface

Remote
Application

Network
Interface

Java Application
/ GUI

Machine
Learning

Figure 1. Dependency graph diagram of Cognitive

Foundry components and interoperability methods.

Cognitive Foundry

to resume execution later, or on another machine, without

altering the results of a simulation. Furthermore, the

Cognitive Model State can be sent across a network to

distribute computation and exploit the parallelization

inherent in many cognitive agent simulations. The

Cognitive Framework supports the serialization of

Cognitive Models using a binary format, human-editable

XML, or comma-separated values.

3.2 Cognitive Module

The Cognitive Module interface gives users fine-grained

control of what aspects of a “theory of cognition” are

incorporated into a particular Cognitive Model. The

primary functionality of a Cognitive Module is contained

in its “update” method. The update method is given the

current Cognitive Model State, along with the previous

state of the Cognitive Module and the current set of

sensory inputs. The update method of each Cognitive

Module returns its state for the next time step. Cognitive

Modules can pass information to one another through the

Cognitive Model State object, which contains a

blackboard-like component where information can be

posted and read by any Cognitive Module.

3.3 Cognitive Element (Cogxel)

The Framework operates on a key data structure interface:

the cogxel. Cogxel stands for “cognitive element” and is

modeled after the word “pixel,” which means picture

element. A cogxel is the fundamental unit of data in the

Cognitive Framework. Cogxels normally reside in the

Cognitive Model State (blackboard), as they represent the

overall state of the model. Cogxels are accessed by a

high-level “semantic label” that describes the data

contained by cogxel, such as “Heart Rate” or

“Context12345.” Cogxels are in turn stored in a manner

that allows constant-time lookup of the data contained by

the cogxel, allowing efficient retrieval along with

semantically meaningful storage. A default cogxel

implementation consists of a semantic label and a scalar

activation level. However, being an interface, other

applications have created their own cogxel

implementations that use bindings, activation flags, etc.

Thus, cogxels can be adapted to fit the specific needs of

an application or a theory of cognition, such as to model

symbolic, non-symbolic, or structured information.

3.4 Lightweight Implementation

The Cognitive Framework Lite is an implementation of

the Cognitive Framework interfaces that abide by the

specifications set forth by some of our customers and

stakeholders. It is specifically designed for having many

agent models within a larger simulation. It is a “lite”

version of the interfaces because it does not allow for the

dynamic addition or removal of modules while the model

is running. This means that all modules must be added to

the model at its creation time. This allows for compact

data structures and a simple, fast update loop within the

model. The “lite” version of the model can run within a

high-performance computing (supercomputer)

environment, with many models executing on a single

processor with a minimal memory footprint. The “lite”

implementation also contains lightweight

implementations of some basic cognitive modules, such

as a semantic network and perception modules.

3.5 Concurrent Implementation

Cognitive Models requiring significant computational

resources can employ a concurrent implementation of the

Cognitive Framework. For example, we are currently

developing a theory of analogical reasoning using

physiological models of visual and prefrontal cortex that

Figure 3. Cognitive Model components. One object

encapsulates the entire state of the model. The design

emphasizes modularity and state encapsulation.

Cognitive Model

Cognitive
Module

Cognitive Model State
(Current)

Cogxel State
(Blackboard)

 Cogxel

Cognitive
Module
State

Theory of
Cognition

Figure 2. Life-cycle diagram of a Cognitive Module.

Knowledge capture techniques are used to populate a

module from data. Verification and validation is done

on a completed module.

Knowledge
Capture

Manual
Knowledge
Elicitation

Automated
Knowledge

Capture

Theory of
Cognition

Cognitive Module

Theory of
Cognition

Verification
and Validation

Statistical
Validation

Software
Engineering
Verification

Machine
Learning

Mathematical Foundation

GUI

Excel XML
Psychological

Verification

employs large numbers of computational units

representing cortical columns in the human brain. The

concurrent implementation provides a means for

distributing computation in parallel across available

computing resources on local machines, namely multi-

core and multi-processor computers. It also provides the

basis for future extensions of the Cognitive Framework to

support distributed computation across networked

computational resources.

The concurrent implementation breaks up the update

method of a Cognitive Module into three steps: read state,

evaluate, and write state. A concurrent cognitive model

can then operate as follows: all modules read required

input state information sequentially, followed by parallel

execution of each module’s evaluate method, with the

update method completed by having each module write

out its state information in sequence. The Cognitive

Foundry provides a default implementation of this parallel

computation, which employs a thread pool with a user-

defined number of threads onto which module evaluations

are scheduled for execution. In this way, a user may fully

utilize multiple cores and processors on a desktop

computer for model execution. Future implementations

will allow distributed computation through evaluations on

network compute resources.

3.6 Perception Module

Every CS&T application needs a way to glean

information from the environment. The Cognitive

Framework accomplishes this by specifying a perception

module, capable of taking some external data source and

transforming relevant information from it into a form that

other modules can process (i.e., cogxels). Perception is

represented as a module such that different approaches to

perception can be experimented with, and possibly

combined.

3.7 Manual Knowledge Elicitation and Automated

Knowledge Capture

Perhaps the most intricate and application-specific step in

creating a Cognitive Model is providing the proper set of

parameters needed to configure the Cognitive Modules.

Some Cognitive Modules can use predefined parameter

sets, but most need to be loaded with domain-specific

information. In general, there are two approaches to solve

this problem: manual knowledge elicitation and

automated knowledge capture. Manual knowledge

elicitation involves a structured interview with a subject

matter expert and the subsequent encoding of this

information into a form that the Cognitive Foundry can

understand. The Cognitive Foundry provides support for

manual knowledge elicitation through both user-interface

components and human-editable input file formats, such

as Microsoft Excel and XML. Not surprisingly, manual

knowledge elicitation is quite labor intensive and

intractable for application domains where there are many

interacting factors, as the combinatorics get out of hand

quickly. Furthermore, slight changes in the application

domain require a complete retooling of the elicitation

process, generally resulting in another interview of the

subject matter expert. The alternative approach,

automated knowledge capture, involves collecting a

relevant set of data in the application domain and then

using that data along with a set of machine-learning, or

data-mining, algorithms to create the necessary

information needed for the Cognitive Module. The

Cognitive Foundry provides support for this approach

through the Machine Learning package, discussed in

section 4.

The main constraint that automated knowledge-capture

techniques have is that they all require relevant data for

the problem they are addressing, usually in large amounts.

If no relevant data exists, or can be readily collected, then

automated knowledge-capture techniques may not be of

much help in solving the problem. However, if a user has

access to, or a mechanism to collect, relevant data, then

an automated knowledge-capture technique probably

exists that can accurately populate a cognitive model to

predict or categorize the problem at hand. In some cases,

real data may have to be augmented with synthetic data to

provide enough support for the automated knowledge-

capture algorithms. However, there exist procedures for

this augmentation as well.

The Foundry contains a Framework-Learning integration

package that was designed so that components of the

Cognitive Framework package could be used in

conjunction with machine-learning algorithms. In other

words, this provides users of the Cognitive Framework

inline access to the large collection of automated

knowledge-capture algorithms from the Machine

Learning package by automatically populating Cognitive

Modules from data without the tedious process of manual

knowledge elicitation. By using the modules of the

Framework-Learning package, a developer can

automatically create models of behavior and cognitive

processes gathered from disparate data sources.

3.8 Cognitive Model Factory

A Cognitive Model Factory is a container that holds the

complete recipe for making a Cognitive Model: the full

list of modules and all of their parameters. Having a

factory allows multiple copies of the same model to be

instantiated and provided different inputs. It also provides

a mechanism for modules to share static information

across Cognitive Model instances so that the data does not

have to be copied, thus saving memory in large-scale

simulations. To borrow an example from physics, all

oxygen-16 molecules are identical; they have the same

static parameterization. To create a simulation of many

interacting oxygen molecules, it is not necessary to copy

the parameterization of an oxygen molecule for each

model; they can share this static information. This saves

memory and the needless computation used to copy the

redundant parameterization. Cognitive Model Factories

provide an analogous functionality, allowing Cognitive

Modules to share static information across many

instances.

3.9 Using the Output of a Cognitive Model

The final step in integrating a Cognitive Model into a

CS&T application is to determine how to use the output

of the model for the application. By this, we mean using

information contained within cogxels to perform some

sort of behavior or action for an agent within its

environment. Typically, this is accomplished by

determining the semantic labels for the cogxels containing

the relevant output information for generating actions.

However, an application can access and make use of any

cogxel in the Cognitive Model State, which means it has a

vast amount of information regarding the internal state of

the Cognitive Model to make use of when generating an

action. Figure 4 illustrates the overall operation of a

Cognitive Model.

The Cognitive Foundry contains graphical user-interface

tools that can display the outputs, and internal state, of a

Cognitive Model. While a predefined user interface may

not be applicable for a particular end-user application,

developers often find it helpful for rapid-prototyping or

debugging purposes. Following the design philosophy of

the Foundry, the piece components of the user interface

may serve as the basis for various end-user applications.

3.10 Example Implementation of a Cognitive Model

The design of the Cognitive Foundry supports cognitive

simulation at many levels of fidelity from low-level

connectionist networks to high-level, abstract symbolic

approaches. We have used the Cognitive Foundry for a

variety of research projects, including building a model of

driving difficulty, agents in economic and social

simulations, and evaluating trainee performance in a

simulated environment. Here we present a brief overview

of an application of the Cognitive Foundry for a current

project underway to better elucidate how the Foundry

helps support cognitive simulations. The project entails

constructing a model of human analogical reasoning

based on published psychological and physiological

literature and research into human performance on a

visual test of intelligence. For this model, the level of

fidelity to be simulated is that of a single cortical column

within the human brain. Currently we are employing

Fuzzy Adaptive Resonance Theory (ART) models as an

abstract representation of a cortical column. Individual

cortical column models are assembled in a connectionist

manner that plausibly models the human visual

processing stream and prefrontal cortex. Following

training, the model is presented with representative visual

problems from the visual test of intelligence and for each

the model’s output is its answer to the problem, chosen

from a multiple choice set.

The Foundry enables the straightforward construction,

training, and evaluation of this model. A perception

module models the human primary visual cortex’s

orientation columns. This module takes as an input a

rasterized visual intelligence test problem and outputs

real-valued cogxels representing the degree to which a

given line orientation is detected in the input image in

each of a set of retinotopic receptive areas. Cortical

columns are implemented as cognitive modules. Each

cognitive module contains a single Fuzzy ART as well as

Figure 4. Operation of a Cognitive Model. A) A

perception module takes an external input, processes

it, and produces outputs which are stored in cogxels in

the Cognitive Model State. B) The Cognitive Model

State contains current cogxel values that change as the

model is run across multiple update steps. C)

Cognitive modules take inputs in the form of cogxels

from the shared Cognitive Model State, perform

implementation specific processing, and then typically

write outputs back to cogxels in the shared state. D)

The model's state and the associated activity of the

modules represent its embodiment of a model of

cognition; some modules may produce external

outputs that can be used for purposes such as model

evaluation or for allowing a model to control external

components, such as in an embedded system

Cognitive
Module

Cognitive Model State

Cogxel

Cogxel

Cogxel

Cogxel

Perception

Module

Cognitive
Module

Cognitive
Module

01110000110

Input to Model

11001001001
External Output

A

B

C

D

a description of what cogxels the module should use as its

input. The input cogxel description provides the

mechanism for determining the wiring of the overall

connectionist network of cortical columns. The overall

Cognitive Model contains the perception module and each

of the cortical column modules, and is implemented using

the concurrent model implementation previously

described.

Running the model is handled by the Foundry, and

involves presenting an input image to the model during an

update step. Refer to Figure 4 for an overview of the

operation of the model. Internally, the Cognitive

Framework presents the image as input to the perception

module, causing it to produce output cogxels. These

cogxels reside in the blackboard-like Cognitive Model

State. As the model is run across multiple update steps,

each module retrieves the appropriate input columns from

the Cognitive Model State, and produces its own output

cogxels. In this model, these outputs are real-valued

vectors produced by the Fuzzy ART contained within a

given module.

By employing the Foundry, the team was able to focus on

the implementation details of the cortical columns and

overall wiring of the model without having to separately

devote effort to creating the framework for constructing,

training, and evaluating the model. Furthermore, the

concurrent implementation provided by the Foundry

allows for a significant reduction in computation time for

model training and evaluation. Finally, the robust set of

machine learning algorithms included in the Foundry

(described in section 4 below) provided the team with a

strong foundation for implementing project specific

functionality.

4 Machine Learning Package

The Cognitive Foundry’s Machine Learning Package

provides a wide variety of optimized, verified, and

validated general- and special-purpose algorithms for

machine learning: the analysis and characterization of

large datasets, function minimization, parameter

estimation, prediction, and categorization. The package is

highly extensible, meant for allowing the rapid-

prototyping of applications based on machine learning

and the development of new or experimental algorithms

and architectures. Typically, in machine learning, there

are various conflated components: the object being

created, the learning algorithm used to create the object,

the data upon which the algorithm operates, the

performance measure, and statistical validation. For

example, we can create a neural network using gradient

descent with a mean squared-error cost function.

However, there are many neural-network architectures

(feedforward, recurrent, different activation functions,

etc.), many different learning algorithms (conjugate

gradient, Levenberg-Marquardt, Quasi-Newton, etc.),

many different cost functions, and many validation

techniques. Unless these components are decoupled, the

combinatorics quickly becomes onerous. In keeping with

the design philosophy of the Cognitive Foundry, the

Machine Learning package separates each of these

components and eliminates the need for Foundry users to

write special-purpose code. This allows users of new

functions (e.g., neural-network architectures) to use

existing learning algorithms and, conversely, creators of

new learning algorithms to test their ideas on different

functions.

4.1 Why a Machine Learning Package?

We created the Machine Learning package to support

using automated knowledge-capture techniques to

populate cognitive models. Many such techniques are

based on machine-learning algorithms. Furthermore, our

research group had several implementations of similar

machine-learning algorithms written in different

programming languages, with slight variations on similar

approaches. The Machine Learning package is a common

repository of these algorithms, so that they may be easily

integrated into different applications and projects.

Due to the decoupling of the learning algorithm from the

object being learned, the Machine Learning package

allows rapid prototyping and experimental testing of

different algorithms, approaches, and function

approximators and categorizers. The package

accomplishes this through the systematic use of interfaces

and generics to encapsulate the needs of each algorithm,

including their inputs, outputs, and parameterizations. We

followed an object-oriented design for the entire package

so that the different algorithms utilize common,

interchangeable subcomponents, such as cost functions

and statistical validation. This approach greatly simplifies

the integration of exiting machine-learning algorithms to

new problems and, conversely, to apply new machine-

learning algorithms to existing problems and datasets.

We did this to focus on experimenting with different

algorithms and parameterizations to create machine-

learning systems embedded into CS&T applications. The

design of the Machine Learning package makes wide use

of Java generics and, together with the decoupling of the

piece components of a machine-learning system, the

source code tends to be very similar to pseudo-code from

textbooks and research papers. This has the result of

greatly increasing the reusability of elements in the

package and increasing the level of verification and

validation of the algorithms.

4.2 Learned Functions

One of the key concepts of the Machine Learning package

is the separation of the machine-learning algorithm from

the function created by the algorithm, which is typically

some form of function approximator or categorizer. For

example, consider a prototypical function approximator,

the artificial neural network. Many machine-learning

algorithms can estimate locally optimal parameters for

neural networks, such as gradient descent, genetic

algorithms, and inverted quadratic line search. However,

each of those machine-learning algorithms can estimate

the parameters of a much broader class of function

approximators. Separating the function approximator

from the machine-learning algorithm means that we only

have to write a learning algorithm once, instead of the

combinatorial explosion that occurs in the cross product

of function approximators and learning algorithms. The

package contains many standard and specialty function

approximators such as artificial neural networks, linear

systems, dynamical systems, k-nearest neighbors,

polynomials, categorizers, decision trees, support vector

machines, and mixture of Gaussians. Furthermore, the

Cognitive Foundry allows developers to create their own

functional forms, or to chain together existing functions,

to create new functional architectures, making the

Machine Learning Package highly extensible. A

fundamental ability for function approximators and

categorizers is the ability to express itself as a vector of

tunable parameters. In this form, many learning

algorithms can automatically tune the parameters of

function approximators to achieve some desired result.

4.3 Learning Algorithms

The main paradigm of the learning package is that a

learning algorithm is given a dataset from which to create

a new learned object, typically a function approximator or

categorizer. This creates a clear separation between the

input to the algorithm, the output from the algorithm, and

the parameters of the algorithm. There exist two primary

learning interfaces: the Batch Learner interface and the

Online Learner interface. Batch Learners operate only

after all data have been collected, while Online Learners

can operate concurrently as data are being collected.

Each of these learners operates in a supervised or

unsupervised manner. Supervised-learning algorithms

learn to generalize from example input-output pairings,

while unsupervised-learning algorithms attempt to

discover patterns in an unlabeled dataset to achieve some

goal (Duda, Hart, & Stork, 2001). We will discuss each

of these techniques in the following sections.

4.3.1 Supervised-Learning Algorithms

Supervised-learning algorithms take a dataset of input-

output pairs and generalize them to as-yet-unseen inputs

by finding parameter sets that minimize a cost function.

Commonly these algorithms yield “function

approximators” or “regression” when the outputs are real

valued and “categorizers” when the outputs are discrete

valued. We provide a wide variety of supervised-learning

algorithms such as derivative-free algorithms, gradient-

based methods, linear regression, algebraic solvers, kernel

methods for both regression and categorization, and

decision trees for both regression and categorization. We

also have implemented meta-learning algorithms such as

ensemble methods, which demonstrate the power of

having a unified set of interfaces implemented by a

variety of learning algorithms. A typical design pattern

for a supervised learning algorithm is shown in Figure 5.

4.3.1.1 Derivative-Free Algorithms

There is a class of parameter-estimation algorithms that

do not require gradient information to find a (locally)

minimum-cost parameter set of a function. That is, to

find the optimal solution, these algorithms only require

function evaluations. While these algorithms are the most

general, and can find optimal parameters for functions

that are highly nonlinear with nonanalytic or inexistent

derivatives, they tend to be less efficient than gradient-

based algorithms when gradient information can be

computed or approximated.

We have implemented standard derivative-free algorithms

including Direction Set (Powell’s) Method, Downhill

Simplex (Nelder-Mead) algorithm, Genetic Algorithms,

and Simulated Annealing.

4.3.1.2 Gradient-Based Algorithms

A more restrictive class of parameter-estimation

algorithms are those that require gradient information to

find a (locally) minimum-cost parameter set of a function.

These algorithms usually perform better than non-

gradient-based methods.

We have implemented standard gradient-based algorithms

including Quasi-Newton Minimization (BFGS),

Levenberg-Marquardt Estimation, Conjugate-Gradient

Minimization, and Gradient Descent. Many of these

Supervised
Learning
Algorithm

Target
Data

Function
Approximator

Parameters

Figure 5. Typical supervised learner design pattern.

Input
Data

Cost
Function

Statistical
Validation

algorithms are also guaranteed to converge using

approximated differentiation procedures by estimating the

parameter Jacobian from function evaluations alone.

Oftentimes, gradient-based algorithms with approximated

derivatives are more efficient than derivative-free

algorithms. We have implemented automated

differentiation procedures for arbitrary functions to give

users the ability to try different gradient-based and

derivative-free algorithms.

4.3.1.3 Special-Purpose Solvers

Some special-case functions have closed-form or iterative

optimal solutions. These functions may be used with the

general-purpose algorithms mentioned above or with

solvers that exploit particular features of these special

functions. For example, we have implemented solvers for

linear regression, linear systems, linear dynamical

systems, multivariate Gaussians, and so forth. Not

surprisingly, these special-purpose solvers are typically

more efficient than general-purpose solvers for the same

functional form.

4.3.1.4 Kernel Methods

We have extensive support for kernel-based methods,

including a set of useful kernel functions and tools for

composing kernel functions. Kernels allow certain

machine-learning algorithms to extend to nonvector data

by defining a similarity measure between two inputs that

fulfill the properties of a kernel function. As such, the

library utilizes generics for kernels, which promotes the

creation of kernels for new data types, which may in turn

be plugged into existing kernel-based algorithms. We

have implemented several kernel-based learning

algorithms for categorization, regression, and clustering.

4.3.1.5 Ensemble Methods

Ensemble methods typically take a simple function and

combine several together to create sophisticated responses

to novel inputs, similar to voting schemes, game theory,

or stock-market collaboration. Ensemble methods are a

natural fit for the Cognitive Foundry’s Machine Learning

package because each machine-learning algorithm

conforms to a standard interface that allows algorithms

that create the same function to be interchanged, meaning

that algorithms conforming to the same interface can be

automatically combined using an ensemble-learning

algorithm that utilizes the output of each learning

algorithm. We have implemented several ensemble

methods including Bagging and AdaBoost.

4.3.2 Unsupervised Learning Algorithms

Unsupervised-learning algorithms take a high-

dimensional space, potentially a “Big Data” problem, and

map it to a low-dimensional and (hopefully) simpler

space. These algorithms are useful for understanding

complicated relationships, identifying statistical

regularities, and visualization. Our set of unsupervised

algorithms emphasizes principal components analysis and

clustering algorithms, such as k-means clustering,

agglomerative clustering, reductionist clustering, and

affinity propagation. The clustering algorithms are based

on a user-defined distance metrics that allow all

unsupervised algorithms to be easily adapted to new types

of data. We also exploit singular value decomposition and

eigenvector decomposition for dimensionality reduction.

For automated knowledge capture, unsupervised learning

algorithms, such as the clustering algorithms listed above,

are used to discover contexts, latent patterns, and

relationships for a Cognitive Model automatically.

4.4 Experiments and Performance Evaluation

We have created objects that automatically evaluate the

performance of learning algorithms against a dataset

using statistical-hypothesis testing techniques. These

“Experiment” objects automatically provide performance

confidence bounds using generally accepted validation

techniques, such as n-fold, leave-one-out (jackknife), and

bootstrap validation. For each experiment, a user specifies

the dataset, learning algorithms, validation methodology,

performance criteria, and summary statistics. The output

of an experiment is a confidence interval describing the

performance range and statistical confidence in the

experiment, making it easy to compare different learning

algorithms, algorithm parameters, or functional forms in a

statistically significant manner.

4.5 Statistics Package

The Cognitive Foundry also includes a comprehensive

Statistics package for performance analysis and statistical-

hypothesis testing, in addition to providing many

probability distributions for modeling purposes.

4.5.1 Null-Hypothesis Testing

The goal of null-hypothesis testing is to determine if two

distributions of data are different in a statistically

significant sense. In other words, can the observed results

be due to chance? This gives a user of the Cognitive

Foundry a quantifiable confidence on the performance of

the system. Different statistical tests have different

assumptions, and it is necessary to find the test

appropriate for the problem at hand.

This package contains the standard statistical tests such as

Student-t Test, Analysis of Variance (ANOVA or F-Test),

z Test, Kolmogorov-Smirnov Test, Fisher Sign Test,

Wilcoxon Signed Rank Test, Mann-Whitney U Test

(Wilcoxon Rank-Sum Test), Receiver-Operator

Characteristic, and others. Given the well-designed

structure of the Cognitive Foundry, it is easy to use the

appropriate null-hypothesis test for the given problems

facing a project.

4.5.2 Confidence Bounds

From estimates based on different datasets, it is often

useful to determine what possible values a parameter

could take. For instance, what is the likely room

temperature from a set of noisy thermometer readings?

Likewise, how many experiment subjects do we need to

achieve a margin of error of at most ±3%? To answer

these types of questions, we have implemented the

standard confidence-bounds routines such as Student-t,

Gaussian, Chebyshev, Markov, and Bernoulli.

5 Common Math Package

The main purpose of the Common Math package is to

provide a common foundation of useful mathematical

routines for building applications. Much of our research

and many applications require mathematical rigor, and the

main component of the Common package is to facilitate

matrix and vector computation, decompositions, and

solver routines, in both dense and sparse representations.

Dense-matrix computation tends to be faster than its

sparse-matrix counterpart, however, many “Big Data”

applications simply cannot use a dense-matrix

representation. The Cognitive Foundry gives users the

flexibility to choose the representation that best suits their

needs. The basic definitions of a matrix and vector are

interfaces, which gives Foundry users the freedom to

write their own Matrix package. The default Matrix

package in the Cognitive Foundry is based on the publicly

available Matrix Toolkits for Java (MTJ) library. MTJ

performs its computations, decompositions, and solvers

using callbacks into the best-in-class native libraries

LAPACK and BLAS, resulting in computational speeds

competitive with other heavily optimized computational

packages. If these native libraries are not available, MTJ

will redirect the calls to platform-independent Java

versions of LAPACK and BLAS, which are slower than

the native versions. This flexibility allows Cognitive

Foundry applications to use the most efficient

computational engine available, while preserving cross-

platform compatibility.

6 Related Work

Agent-based (Wooldrige & Jennings, 1995) and cognitive

simulation is an active area of research, and there are

many cognitive architectures in existence, such as ACT-R

(Anderson & Lebiere, 1993) and SOAR (Laird, Newell,

& Rosenbloom, 1987). The Foundry’s Cognitive

Framework builds upon previous research in cognitive

frameworks at Sandia by Forsythe and Xavier (2002).

However, unlike cognitive architectures that are built

around a single theory of cognition, the Foundry promotes

modularity and experimenting with various aspects of

different theories of cognition. This provides a value

added over existing architectures in that the relevant

cognitive components can be utilized to fill project

specific needs. This includes the ability to choose the

appropriate level of modeling fidelity for a given

application. The Foundry is also different in its focus on

integrated automated knowledge capture and the ability to

create lightweight cognitive components that are easy to

embed in agents and stand-alone CS&T applications.

An example of a project that incorporated different

cognitive architectures is the Agent-Based Modeling and

Behavior Representation (AMBR) Model Comparison

project (Gluck & Pew, 2001), which involved comparing

the performance of different cognitive architectures in

modeling the behavior of an air traffic controller. The

Foundry is designed to support combining and comparing

existing models of cognition developed within its

environment, similar to the comparisons performed using

the HLA environment in AMBR. It also provides its own

robust library for the development of new models, and for

the combination of new and existing models.

There are also other libraries of machine-learning

algorithms in existence, such as Weka (Witten & Frank,

2005) and RapidMiner, formerly YALE (Mierswa, Wurst,

Klinkenberg, Scholz, & Euler, 2006). However, the

Foundry’s learning package differs from existing

packages in several ways. First, the Cognitive Foundry

does not force users to create datasets in a fixed data

structure for the machine-learning algorithms, such as

vector data. Instead, the Foundry algorithms are

implemented so that they can be used with a variety of

data structures by its use of generic type parameters. The

Foundry’s Machine Learning package is also different

because it spans the entire development cycle of a

learning system from data collection, analysis,

experimentation, rigorous tools for performance

validation, and deployment into applications, including

embedded systems. The package is targeted at making it

easy to embed the function created through learning into

other applications, such as agent models, which

distinguishes it from other packages that are focused

primarily on data mining and visualization.

7 Conclusions and Future Work

We have presented the Cognitive Foundry and its two

primary components that relate to agent behavior

modeling: the Cognitive Framework and Machine

Learning packages. For future work, we would like to

create a graphical user interface to increase the ability of

users with little computer-programming experience to

create cognitive models and machine-learning systems.

We also plan on adding new cognitive modules, learning

algorithms, and other packages, such as text and image

analysis, to the Foundry.

8 References

Anderson, J., & Lebiere, C. (1993). The Atomic

Components of Thought. Hillsdale, NJ: Lawrence

Erlbaum Associates.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern

Classification. New York, NY: Wiley-Interscience.

Forsythe, C., & Xavier, P. G. (2002). Human emulation:

Progress toward realistic synthetic human agents. In

Proceedings of the 11th Conference on Computer-

Generated Forces and Behavior Representation.

Gluck, K. A. and Pew, R. W. (2001) Overview of the

Agent-based Modeling and Behavior Representation

(AMBR) Model Comparison Project. In Proceedings of

the 10
th

 Conference of Computer Generated Forces and

Behavior Representation.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).

SOAR: An Architecture for General Intelligence.

Artificial Intelligence, 33 (1), 1-64.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M. &

Euler, T. (2006). YALE: Rapid Prototyping for Complex

Data Mining Tasks. In Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD-06).

Witten, I. H. & Frank, E. (2005) Data Mining: Practical

machine learning tools and techniques, 2nd Edition. San

Francisco: Morgan Kaufmann.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent

Agents: Theory and Practice. In Knowledge Engineering

Review.

Acknowledgements

This work was partially funded by the Office of Naval

Research, Code 30. Sandia is a multiprogram laboratory

operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy

under contract DE-AC04-94AL85000.

Author Biographies

JUSTIN BASILICO is a researcher at Sandia National

Laboratories in Albuquerque, NM. He received his B.A.

in Computer Science from Pomona College and his M.S.

in Computer Science from Brown University. His

research interests include machine learning, cognition,

information retrieval, statistical text analysis, and human-

computer interaction.

ZACHARY BENZ is a researcher at Sandia National

Laboratories in Albuquerque, NM. He received his B.S.

in Engineering at Harvey Mudd College and his M.S. in

Computer Science at the University of New Mexico. His

research interests are in cognition, cognitive modeling and

statistical text analysis.

KEVIN R. DIXON is a researcher at Sandia National

Laboratories in Albuquerque, NM. He received his B.S.

and Ph.D. from Carnegie Mellon University in Electrical

& Computer Engineering. His research interests are in

statistical pattern recognition, dynamical systems, human-

machine interaction and adaptive control.

	Introduction
	Why the Cognitive Foundry
	Benefits of the Cognitive Foundry
	Communicating with the Cognitive Foundry
	Design Methodology

	Cognitive Framework
	Cognitive Model
	Cognitive Module
	Cognitive Element (Cogxel)
	Lightweight Implementation
	Concurrent Implementation
	Perception Module
	Manual Knowledge Elicitation and Automated Knowledge Capture
	Cognitive Model Factory
	Using the Output of a Cognitive Model
	Example Implementation of a Cognitive Model

	Machine Learning Package
	Why a Machine Learning Package?
	Learned Functions
	Learning Algorithms
	Supervised-Learning Algorithms
	Derivative-Free Algorithms
	Gradient-Based Algorithms
	Special-Purpose Solvers
	Kernel Methods
	Ensemble Methods

	Unsupervised Learning Algorithms

	Experiments and Performance Evaluation
	Statistics Package
	Null-Hypothesis Testing
	Confidence Bounds

	Common Math Package
	Related Work
	Conclusions and Future Work
	References

